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Abstract

Hyper-volume visuaization is designed to provide simple
and fully explanatory images that give comprehensive in-
sightsinto the global structure of scalar fields of any dimen-
sion. The basic idea is to have a dimension independent
viewing system that scales nicely with the geometric dimen-
sion of the dataset and that can be combined with classical
approaches likeisocontouring and animeation of dices of nD
data. We completely abandon (for core simplicity) rendering
techniques, such as hidden surface removal or lighting or re-
diosity, that enhance three dimensional realism and concen-
trate on the real-time display of images that highlight struc-
tural (topological) features of the nD dataset (holes, tunnels,
cavities, depressions, extrema, etc).

Hyper-volume visualization on the one hand is a general-
ization of direct parallel projection methods in volume ren-
dering. To achieve efficiency (and rea-time performance
on a graphics workstation) we combine the advantages of
(i) a hierarchical representations of the hyper-volume data
for multiresolution display and (ii) generalized object space
splatting combined with texture-mapped graphics hardware
accel eration.

The development of a system that implements display
techniquesfor multidimensional datasets requires careful de-
sign of both agorithmsand user interfaces that scalelinearly
with the dimension »n of the input geometric space. Thisis
a mgjor chalenge since straightforward generalizations of
standard techniques that are suitable for display of 3D data
yield exceedingly intricate interfaces. For example, a view
manipulation graphical user interface is usualy based on a
rotation of the object about Cartesian rotation axes, with pos-
sibly unit quaternions internal representations for the rota
tion group. Unfortunately the number of independent rota-
tion axes grows quadratically with dimension(threein 3D to
six in 4D toten in 5D to fifteen in 6D space). Going back
to the basics of paralel projections, we develop an adterna
tive scheme that is very simple to implement and immedi-
ately gives aview manipulation graphical user interface that
scales linearly with the dimension. One can still utilize ma-
trix or quaternion or higher dimensional rotational group rep-

resentations, internally for calculations.

The main results of our paper are thus both a multi-
resolution direct rendering algorithm and scalable graphical
user interface that providesinsightfull global views of scalar
fields in any dimension, while maintaining the fundamental
characteristics of ease of use, and quick exploratory user in-
teraction.

1 Introduction

We introduce a new technique for informative visualization
of scalar fields embedded in n-dimensional spaces. Exam-
ples of scaar fields defined over more than three variables,
are gated MRI volume scans of heart motion, time vary-
ing datafrom computational fluids dynamics, molecular van-
DerWaal energies as a function of molecular configurations
(bond angles).
Our main contributionsare:

1. the design and implementation of a new graphical user
interface for interacting with parallel projections of »n-
dimensional scaar fields;

2. the design and implementation of a higher dimension
generalization of the traditional splatting agorithm for
3D volume rendering of scalar fields;

This paper extends the research on visudization tech-
niqueswhich provide* global views’ of scalar fieldsindepen-
dent of the dimension of their embedding space. In thispaper
we directly render n-dimensional views of the global scalar
field.

A number of approaches have been attempted to visualize
higher dimensional objects[16, 14, 1]. The grand tour tech-
nique[2] isbased ontheideaof projectingthe n-dimensional
datasets onto a 2-dimensiona subspace that is moved along
random or selective paths. By visually perceiving coherence
in the contiguous 2D images the user can get an idea of the
actual structure of the nD object.

Bill Hibbard et a. [13] developed VisbD for visuaizing
scalar fields defined over 4D grids. They assumethat thelast



dimension is the time evolution of the dataset, so that they
simply animate the display of the isosurface, volume render-
ing or planar slices. Hence their approach is fundamentally
to animate traditional scientific visualizations. For their pur-
pose they achieve good results but the technique cannot be
generalized for higher dimensiona datasets.

Hanson and Heng [9] introduced atechniqueto present 3D
scalar field by means of 4D el evation modelsin the same way
2D scalar fields can be show as 3D terrains. Rotating the 4D
pseudocol ored el evation modd the user can see its structure
enhanced by theillumination scheme developed in[11]. The
approach has been later generaized [10] to be suitable for
display of moregeneral 4D geometric objectsand made more
efficient to providethe speed necessary for good user interac-
tion.

Laur and Hanrahan [15] accel erate the 3D splatting[20] al-
gorithm adopting an octree hierarchica representation of the
volume data. We generalize this approach showing also how
therelative storage overhead of thefull 27 -tree hierarchy de-
creases as the dimension of the embedding space increases.

The Hyper Sice approach [19] introduced by van Wijk and
van Liere usesan array of 2D dicesof high dimensiona data
Various interaction approaches are applied for different user
objectives. Whilethisapproach providesintuitiveuser inter-
action, for higher dimensionsit becomes an increasingly dif-
ficult problem to fuse the multiple slices and establish an un-
derstanding of more complex patternsin the data.

On important aspect in developing a visudization tool
for n dimensional data is the design of an interface simple
enough to make the user interaction reasonably simple and
intuitive. Duffin and Barret [6] addressed this problem by
presenting a simplified 2D user interface to specify an n-
dimensional orthonormal rotation matrix.

The approach introduced in the present paper can be con-
sidered agood complement to the previous approaches listed
above. A common aspect of al such approachesisthat it can
provide a redlistic and detailed representation of “local” (in
time or space) feature of the scalar field. After looking at
many sequences of picturesthe trained user attemptsto form
in his own mind a “globa picture” of the dataset. The ap-
proach proposed here triesto avoid relying (as much as pos-
sible) on the geometric abstraction capabilities of users, pro-
viding them directly with global projectionsof higher dimen-
sional spaces with real timeinteraction in areasonably simi-
lar way to how they would exploretheir own physical world.

There are two main challenges in developing such an ex-
ploratory approach to visualization:

e to make the user interaction be sufficiently intuitive,
simpleand “linearly” scalable with the dimension

o to efficiently render such a large amount of data (note
that the size of the dataset grows exponentially with the
dimension n of the embedding space

2 Hypervolume Projection Transfor-
mation

Inthissection wediscusshow a2D “view” of annD objectis
geometrically defined and how such a definition impacts the
user interfacefor view selection. Weconsider parallel projec-
tions. Itiswell known sincethelast century (see fundamental
theoremby K. Pohlkeand H. A. Schwarzin[7]) that giventhe
image of areference coordinate axes of aparallel projection,
the projection itself is completely defined. A short informal
proof of thisfact isasfollows. Consider the parallel projec-
tionasinfigure 1. Inthe (x, y) view plane we draw the pro-
jection of the reference axes (X, Y, 7) of the 3D space. The
unit vectors of the three axes are projected respectively onto
thevectorsiy, [5, {3 andthe projection of theorigin O isgiven
by o+, . The projection of the point P(a,b,c)isthusgiven
by:

o+lp=o+lo+a-li+b-b+e s @)

This vectoria eguation defines the parale projection as
the linear mapping II(R* — %?) that maps the 3D point
(X,Y, Z) ontothe 2D point (x, y):

O(R? — N?)  (X,Y, 2) = (2,9);

r=1+ X L +Y B+ 715 @
y=U+ X B 4+Y - §+7-1

where?/ isthe j** component of the vector I;.

Inthesystem (2) wefix thetriple (X, Y, Z) to computethe
corresponding 2D point (z, y). Symmetrically we fix a par-
ticular pair (z, y) and determineall the (XY, 7) that satisfy
the system (2). Inthe latter case the set of all the solutionsis
alineparaléd tothe vector:
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G

7 isthedirection of projectionthat definesthe parallel projec-
tion. Note that changing the three vectors iy ,l, and I3 in al
possibleways, we obtainal the possible parallel projections.
Moreover it iseasy to show that avalid view is given by any
surjective linear mapping I1. Thisimpliesthat the only con-
straint that thetriplel, {2, {3 needs to satisfy is:

T 4
rank Lotz s ) =2
( O

Simple additional linear constraints over the triplel; /- i3
guarantees the paralld projection to be orthographic (iso-
metric, dimetric or trimetric) or oblique (cavalier, cabinet or
generic) [17].

2.1 Thegeneral mapping II(R" — R?)

In the previous section we have discussed the methodol ogy
for defining a parallel projection from 3D space to the 2D



Figurel: Paralle projectiondefinitionfrom3Dto2D. (a) Re-
I ati onship between 3D and 2D coordinatesof apoint. (b) Par-
allel projection of the 3D reference system onto the 2D view
plane.

view plane. In this section we show how this alows gener-
alization of parallel projectiontransformationfrom nD space
to a 2D plane. We aso show how one can grow the dimen-
sion n of the object space without increasing the complexity
of the paralé projection definition scheme.

Let {¢),...,é,} denote the canonica basis in the n-
dimensional object space ®t”. The paralel projection

I(R" = R*) 2 (X1,..., Xn) = (2,9)

is a linear transformation and is therefore completely de-
termined by the n vectors I; = II(&), i =
1,...,n.Infact by linearizing the image under 11 of a point

P(Xl,,Xn)I€1X1+€2X2++€an|Sg|Vm
by:
I(P) = IE - X1+ - Xo+ -+, - Xy)

= TI(&) - X7 +T0(é%) - Xa+ -+~
= L Xit+bh-Xot 4l X

+1(E) - Xa)

Asinthe3D case, the mapping defines a system of two linear
equalities:

X

(5)=(d )| ©

Xn

Changing the vectors I; we obtain al the possible projec-
tion matrices. For a projection matrix to be “valid” it is suf-
ficient that it isfull rank (otherwise we would project onto a
line or onto a point). Changing the vectors; in al thevalid
ways we produce all the possible 2D views of the dataset.

To grow the dimension » of the object space means to add
new /; vectors and hence columns to the projection matrix.
What in the 3D case is called the “direction of projection” is
in generd thekernel K of the mapping I1. Since the projec-
tionisgiven by afull rank 2 x n matrix thekernel of Il isa
(n — 2)-dimensiond linear space. In 3D we have that points

aligned aong the direction of projection are projected onto
the same 2D point. Inthe nD space we have that two points
are projected onto the same 2D point if and only if they are
contained in the same (n — 2)-dimensional affine space par-
allel to the kernel of the projection 1.

2.2 Occlusion

Thenice property of the 3D caseisthat the kernel of the map-
pingllisal-dimensional affine space. Hence, one can define
atotal order among the 3D points projected onto the same
point in 2D. This automatically yields a sound definition of
occlusion (or visibility ordering) between pointsin 3D space.
A point P; occludesapoint Py if (i) TT(Py) = TI(P2) and (ii)
and P, is“nearer” than P, or more formally P; has smaller
rank than P- inthe order within their common projectionray.
For dimensions four or higher, auniquetotal order cannot be
defined at least in a sound geometric sense and independent
from the selected coordinate system. Artificial (partial) or-
derscan beeasily imposed on the pointsof the (n—2)-flat that
isprojected onto asingle 2D point. Moreover, in 3D, given a
direction of projection, one can define two aternative occlu-
sion orders that give two views of an object in afixed posi-
tion, say front view and aback view. 1n 4D or higher dimen-
sions things get immediately more intricate since one needs
to define a coordinate system within the kernel of the map-
ping I1 to define a certain occlusion order. Thisinvolvestwo
main difficulties:

e Already in4D, onegetsaninfinity of different occlusion
orders, each giving a different view of the object (keep-
ing the position of the object fixed). Thisimplies addi-
tional degrees of freedom to explore and hence longer
interaction times.

¢ One needs to define a reference system within the ker-
nel, but by definition, the entire kernel is projected into
asingle point. So we need either some separate view
that “shows’ the kernel or anumerical interface to con-
trol the occlusion order.

Apart from the complexity introduced by an occlusion or-
der, the more fundamental issue is the meaning of such an
occlusion and what enhancement if any, the occlusion yields
to the images displayed. In the 3D case, occlusion certainly
enhances the realism of the images and better highlightssil-
houettes of the viewed objects. However acase can be made
isthat it aso hidesimportant features of the dataset. In our
case, since we are looking especidly at scalar fields to pro-
vide views that displays its topologica structure, we have
chosen not to provide an occlusion information in our ren-
dering.

2.3 Thegraphical user interface

¢From the general mapping defined in the previous section,
wederivetheagraphica user interfacefor » dimensional ob-



ject exploration that differsfrom the classical rotation-based
interface. usually the basic view transformation that allows
one to change the view of an object is rotation (see sec-
tion 8.2.6 of [8]), since trand ation and scaling allow one to
only change the “focus’ of a view, keeping the display sub-
stantially the same. from a users perspectiveinteraction with
rotations has two main difficulties:

e since one rotation is defined by 2 coordinate axes (the
axes that span the rotation plane) we have that in nd
space the number of independent coordinate rotations
are (;). when onelooksat asimplerigid body configu-
ration space of a 3d object where the number » of coor-
dinate axesissix (threetrand ationsplusthreerotations)
one needs to explore 15 different planes of rotation.

o the user is usudly provided with the ahility to rotate
an object in the coordinate planes so that a rotation in
a generic (non-coordinate) plane needs to be obtained
by combination of the elementary transformations. this
task getsreally confusing in more than three dimension
since one cannot rely on navigation experience acquired
in physica 3d space.

A classica rotation-based interface grows quadratically
with thedimension » of the embedding space getting quickly
unsuitable for simple and fast interaction if n > 3. we em-
ploy an aternative approach that scales linearly with the di-
mension n making theinterface more suitablefor ahigher di-
mensional approach (inthenext subsection we show how this
interface can be enriched with rotational interaction when
needed). The mainideaisthat the user can modify theimage
of thereference system instead of changingthepositionof the
object intheembedding space. Asshownintheprevioussec-
tion, thisapproach provides sufficient degrees of freedom to
exploreall the possible views of the object. in the same time
the approach reduces substantially the number of parameters
that the user needs to dedl with.

Consider the reference system of afive-dimensional space
as in figure 2(a). The user can select with the mouse any
of the axes (highlighted in red) and then rotate/stretch it in
any position. For more accurate interaction, some buttons
and diders are provided, alowing the user to perform the
same operation even if there are overlapping axes or the pre-
cision required cannot be achieved with a simple pick-and-
move operation. Inthisway the user can exploreall the pos-
sible view with much less redundancy. Since the user deals
with one axis at atimethe complexity of theinterfaceisonly
equal to the dimension n of the embedding space. In a six
the length and orientation of the six vectors i I I3 [ 5 and
ls projections of the embedding space unit vectors. Thisis
simpler that rotating in fifteen possible planes. It also may be
more intuitivefor axes that do not correspond to the physica
extent of the object (e.g. time or rotational degrees of free-
dom). Of course when the user needsto rotate the object she
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Figure 2: (8) User interface for selection of viewing pa
rameters. The axes on the left can be directly selected and
stretched or rotated. The image of the standard splat is show
on theright. The diderson top alow fine adjustment of the
stretching and rotation parameters. (b) User interface for se-
lection of transfer function parameters.

can still do that directly as in the classical approach, as de-
tailed next.

2.3.1 Rotation

In this section we show how one can easily integrate in our
image-space approach the classi c object-space rotation. Con-
sider (without loss of generality) arotationinthe X, Y plane
by an angle §. It mapsthe X, Y coordinateto X', Y’ by the
rule:
PR X' =cosf-X —sin?-Y
(X Y) = (XY - {Y’:sin9~X—|—COSH~Y
(4)
whileal the other n — 2 coordinates remain unmodified. To
obtain the equival ent transformation in our image-based pro-
jection definition, we substitute equation (4) into the gener-
alization of (2) to obtain:

MR = R (X,Y, Z,..) — (2,y);



Figure 3: 5D interaction energy scalar field (Red=attraction,
Blue=repulsion, Green=free movement). The axes configu-
ration isreported on the bottom I eft (the stretched axis corre-
spondsto arotational degree of freedom).

=15+ (cosb-X —sinf - Y)+
15 -(sinf- X +cosl -YY+IE- 7+
y=15 4+l (cos-X —sind-Y)+
1§ -(sinf-X +cosb-Y)+1§ - Z+---
©)

that can be rewritten as:

=15+ (I -cosf+15-sinf) - X+

(=1lf -sin@ +1% -cosb) - YV +1& -2+
y=154+ (Y cos@+1 sinf) X+

(=Y -sin@ +1§ -cosl) - Y+ -Z+---
(6)
Hence we provide a slider to control the rotation parameter
6 and at each rotation step replace {1 with I} and {, with [,
where:

(7)

In this way, the user is provided with the same intuitive
ability to rotate objectsasin aclassical 3D user interface.

(¥ -cos@+1E -sind, Y- cosf+1§ sind)T
(=% -sin@ + (& -cos@, —1¥ -sind + 1§ - cos 0)T

ST

3 Hyper-Volume Splatting

This section first provides a working example of the Hyper-
Volume splatting approach and then details the splatting a-
gorithm that we have implemented with the three following
properties:

¢ the use of atransfer function that highlights the basic
structural features of the scalar field;

o the use of a multiresolution hierarchical approach to
speed up the drawing when is provided a user specified
bound on the tolerated error;

o the use of a splatting agorithm that takes advantage
from texture mapping graphics hardware.

Figure4: 5D interaction energy scalar field (Red=attraction,
Blue=repulsion, Green=free movement).

Same view as isfigure 3 but highlighting only some of the
energy components.

3.1 Example of Hyper-Volume Splatting(5D
Molecular Interaction Potential)

Consider a pair of molecules, a small ligand (methanol) and
alarge receptor (Ecballium Elaterium Trypsin Inhibitor'), of
which one wants to study the possibility of docking. At this
purpose one needs to understand how the interaction energy
between them changes as they change relative position. In
particular we regularly sampl e the configuration space of the
ligand tranglations along the z,y,z axes and rotations around
the  and y axes (assuming rough symmetry of the ligand
with respect to the z axis). For each sampled position of this
five dimensiona space one gets a particular value of the in-
teraction energy (sum of el ectrostatic interaction and Van der
Waals interaction components) defining a scalar field sam-
pled over a 5D regular grid. Figure 3 shows the direct ren-
dering of the 5D scalar field highlighting in Red regions of
attracting energy, in Blue region of repulsion energy and in
Green region in free movement of theligand. Thedisplay is
performed directly by projection form 5D space to 2D space
without any dlicing/isocontouring stage so that the informa-
tion contained in the dataset ispreserved inits globality. The
axes reported on the bottom I eft of the picture show how one
of the degrees of freedom (arotation) is stretched more than
the others to enhance better its influence with respect to the
overal scalar field structure. In thiscase it is clear from the
two large red spotsthat correspondingly to high and low val-
ues of that degree of freedom we get more attraction values
than for intermediate val ues (such rotation are probably more
advantageous for adocking of the ligand with the receptor).
Progressively removing al the color but the red as shown
in figure 4 one can aso see how these two large red regions
are connected by a narrow tunnel. Deeper understanding of
the scalar field structure is of course provided by interac-
tive navigation in the dataset structure. For example figure 5
shows a second view of the dataset of figure 3 in which the
axis corresponding to the second rotational degree of free-
dom is also stretched (as in the reference system on top).
From thisview one can see that thetwo large red regions are
inturn divided each into two. On theleft picture one can no-

The Ecballium Elaterium Trypsin
Inhibitor can be found in the file 2eti.pbd available form the Protein Data
Bank htt p: // pdb. pdb. bnl . gov/



Figure5: 5D interaction energy scalar field (Red=attraction,
Blue=repulsion, Green=free movement).
Same scalar field asin figure 3 but from a different view.

tice an interesting small site in green where the ligand can
move a ong theinterface with thereceptor without bei ng sub-
ject to arepulsion force. Again one can show only the at-
traction component (in red) and see clearly that in the central
region the energy is completely repulsive (see right image).
Notethat thiskind of check by partial color removal isneces-
sary because some red spots might be hidden within the blue
region.

3.2 Transfer Function

The definition of a“good” transfer functionis highly depen-
dent on thetypeof scalar field displayed and the features that
one needs to highlight. In low dimensional cases interesting
techniques have been devel oped to support the automatic se-
lection of transfer functions which emphasize the important
structures of a scalar field [12, 4]. In our current implemen-
tation we use the three color componentsto highlight regions
of thefield that encompass values in different ranges. Using
the interface component in figure 2(b) one can interactively
select the range of the scalar field values associated to each
color and the relativeintensity of each color component. The
user clicks on one color button to select the currently modi-
fied component and then uses the didersto determinethe as-
sociated range in the scalar field and scale factor in luminos-
ity. Interactively theview isupdated accordingly to the mod-
ified parameters. In a particular theimage generation is de-
fined as follows. The red color component R(p) in the pixel
p of theimage isgiven by theintegral:

R(p) = L, / Frdk
p+K

where the domain of integration X is the kerndl of the pro-
jection I1 (in 3D is the projection ray through p), dk isthe
n — 2 dimensiona differential eement, L, istheluminosity
of the red component and #). isthe scalar field value normal-
ized in the (min,, max,) range associated to the red color
component. Similar formulas can be written for the blue and
green component providing the complete coloring scheme
for agiven view.

3.3 Efficient Splatting

The splatting algorithmis particularly simple and efficient in
the case of parallel projections since al the splats have the
same shape: they differ only in color intensity and eventually
in scale factor (see the hierarchical representation in the next
subsection). In this case the display agorithm has two main
stages:

1. compute the shape of the standard splat or footprint;

2. draw each voxel by copying the standard splat scaled by
color intensity and size.

Notethat we are not considering the ordering thevoxelsto be
splatted since we do not perform occlusion between voxels
with overlapping images.

3.3.1 Splat Computation

The input data we are displaying is a decomposition of the
space in elementary volume regions or voxels. At the center
of each voxel the scalar field is sampled and assumed con-
stant within the voxel. In this framework each splat is the
projection of a n-dimensional cube (the voxel) of constant
transparency value (the scalar field value) onto the 2D image
space. From splinetheory we get that theluminosity distribu-
tion of the splat isabivariate box spline[5]. Thisfact allows
us to compute the splat luminosity distribution exactly or to
control theerror of an approximated version we might use in-
stead. In particular we observe that the splatting algorithm
applied toavolumeof constant intensity isindeed an approx-
imation of abivariate box spline. Theleve of approximation
depends on what splat one uses and on the number of voxels
inwhich the valueis decomposed. Thisallows use to pursue
abootstrapping technique by using the splatting algorithmto
generate a good splat to be used in the actual rendering of
thescalar field. Notethat thisapproach, again transformsthe
problem of drawing agood splat by projecting a cube (inthis
case n-dimensiona), into a simple reuse of the splatting al-
gorithm. Of coursein theinitial splat drawing stage instead
of an exact splat we may use asimple square. To obtain an
exact drawing of theinitial splat we would need a square of
size equal to one pixel (see[5]) butin practice afairly larger
oneissufficient sincein the successive use of thesplat itsini-
tial footprint will be shrunk to the necessary size. Figure 6
show the splat obtained for different axes configurations in
four, five and six dimensional spaces.

Note aso that in the case of the hierarchica approach the
splats of any level in the hierarchy have exactly the same
shape. They need only be scaled in size and color intensity.

3.4 Hierarchical Representation

One mgjor problem that arises while dealing with multidi-
mensional scalar fields is that the size of the dataset grows
exponentially with the dimension of the embedding space.
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Figure 6: Standard splat footprint for different axes orienta-
tionsin four dimensions (@), five dimensions (b) and six di-
mensions ().

For example, an n-dimensional scalar field sampled on reg-
ular grid with £ samples in each dimension one has k" sam-
ples. A regular gridin the 6-dimensional rigid body config-
uration space with only 64 samples in each direction has al-
ready 23° ~ 68 billion samples.

To deal with such large datasets we adopt a 2" -tree hierar-
chical representation where n isthe dimension of theembed-
ding space. We build the hierarchy inabottom up coarsening
scheme by merging at each step groups of 2™ adjacent voxels
and averaging their function values, with precomputed error
bounds. In the display stage we recursively visit the 2”-tree
nodes in a Depth First Traversal from the coarser level and
stop when the user specified error boundis satisfied (the error
valueisset by theuser withthehelp of thetop diderinthein-
terface shown infigure 2(b)). In thisway, the user isallowed
to trade accuracy for speed in afully controlled manner.

3.4.1 Hierarchy Storage Overhead

There are at | east two possibilitiesin storing the 2" -tree hier-
archy: (i) storethe complete 2"-treein an array, independent
fromthesamplevalues(ii) storethe2™-treeina2”-linkedlist
to avoid multiple storage for neighboring voxels with equal
sample value. In generd it is not clear which approach is
more convenient. It could be even better to have, instead of
a2" tree, abin-treewhere each binary divisionis performed
along one of the n coordinatedirections[21, 18]. Our choice
to storethefull 2™ -treeis derived from the following consid-
erations that show how the full hierarchy storage overhead
decreases as the dimension of the dataset increases.

Consider aregular grid of total size M embedded in the
nD space. Assume for simplicity that the grid has the same
number m of samplesin al the n directions (we have M =
m") and m = 2" for some h. Note that the assumption
made simplify thefollowingformul aswithout atering there-
sult that we shell derive. Sincethe coarsening stagefrom one
level tothenext inthehierarchy isbased on grouping 2™ adja
cent cellswe have that the number of cellsisreduced at each
level by afactor of 2. Overdl the storage M * of the com-

plete 2”-treeis:

T

i=0 7

n h
:0 ]:0

Using ageometric seriesformula® we havethat therelative
storage overhead is given by:

Snyh+1_g

M'-M _ e oD et enyhenon)
M (20" (2m)"(27~1)
e o1 e
(29" (2=-1) ~ (2v)"(2n-1) — (2"-1)

The overhead due to the hierarchica representation can
be bounded by a term that decreases exponentially with the
dimension n so that the hierarchy storage overhead is very
small with respect to the input dataset especidly for n > 3.

3.5 HardwareAcceleration

Oncethe standard splat is computed we storeitsimagein the
texturemap memory. Each splat isthen rendered asa 2D tex-
tured polygon. In thisway we take full advantage from the
hardware acceleration of modern graphics workstations. We
can render alarge number of splats quickly achieving a most
interactiveratesfor fairly complex datasets. In our hierarchi-
cal implementation we also need to compute different splats
for different levels of resolution. To perform this operation
we use mipmaps so that we automatical ly obtai n the best scal-
ing in size of the splat simply by drawing a larger textured
polygon onto the screen.

The ability to interactively view and manipul ate three di-
mensional textures (available on high end graphics worksta:
tions) could also be potentially used. The general mapping
IT: ®" — R? can easily bemodifiedtoamap IT : " — R3
to produce hypervolume splats, which can be then be inter-
actively explored. The full potentid of this exploration will
however be only realized when true volumetric displays be-
come available.

4 Further Enhancements and Future
Directions

In addition to the coupling with classical visualization tech-
niques such as isocontouring and dicing, we are also ex-
ploring the enhancement of the hypervolume view with ad-
ditional computed structural information such as the scalar
topology diagram, a one-dimensiona roadmap of the nD
scalar field [3]. Due to the high-dimensionaity of the data,
it remains an open issue how to highlight fundamenta struc-
tural feature of the scalar field without occluding alarge por-
tion of the displayed view. This problem may be cast into a
n D embedded graph simplification problem. We are dso in-
vestigating automated col ormap definition techniques driven
by the goal of identifying topologically interesting features.

zhtl
x—1

2 Remember that Zf:o zt =
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